Presynaptic alpha1 adrenergic receptors differentially regulate synaptic glutamate and GABA release to hypothalamic presympathetic neurons.

نویسندگان

  • Qian Chen
  • De-Pei Li
  • Hui-Lin Pan
چکیده

The hypothalamic paraventricular nucleus (PVN) neurons that project to the spinal intermediolateral cell column and brainstem are important for the control of sympathetic outflow. Stimulation of alpha(1) adrenergic receptors in the PVN increases sympathetic outflow, but the cellular mechanisms remain unclear. In this study, we determined the role of alpha(1) adrenergic receptors in the regulation of glutamatergic and GABAergic synaptic inputs to spinally projecting PVN neurons. Whole-cell and cell-attached patch-clamp recordings were performed on retrogradely labeled PVN-spinal neurons in rat brain slices. Bath application of 10 to 100 microM phenylephrine, an alpha(1) adrenergic receptor agonist, significantly increased the frequency of spontaneous excitatory postsynaptic currents in a concentration-dependent manner. This effect was blocked by the alpha (1)adrenergic receptor antagonists prazosin or corynanthine. Phenylephrine also significantly increased the frequency of miniature excitatory postsynaptic currents (mEPSCs) but not the amplitude and decay constant of mEPSCs. Furthermore, activation of alpha(1) adrenergic receptors with phenylephrine or cirazoline significantly decreased the frequency of spontaneous inhibitory postsynaptic currents and miniature inhibitory postsynaptic currents, and this effect also was blocked by corynanthine. In addition, 50 microM phenylephrine significantly increased the firing rate of 13 labeled PVN neurons from 3.16 +/- 0.42 to 5.83 +/- 0.65 Hz. However, phenylephrine failed to increase the firing of most labeled PVN neurons in the presence of GABA(A) and ionotropic glutamate receptor antagonists. Thus, these data suggest that activation of alpha (1)adrenergic receptors increases the excitability of PVN presympathetic neurons primarily through augmentation of glutamatergic tone and attenuation of GABAergic inputs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Opioid signalling in the rat rostral ventrolateral medulla.

1. The present article reviews several aspects of opioid signalling in the rostral ventrolateral medulla (RVLM) and their implications for the neural control of blood pressure. 2. In the RVLM, preproenkephalin (PPE) mRNA is expressed by bulbospinal cells that are strongly barosensitive. These putative presympathetic neurons includes C1 and non-C1 neurons. 3. In the RVLM, PPE mRNA is also presen...

متن کامل

Signaling mechanisms of angiotensin II-induced attenuation of GABAergic input to hypothalamic presympathetic neurons.

The hypothalamic paraventricular nucleus (PVN) is an important site for the regulation of sympathetic outflow. Angiotensin II (Ang II) can activate AT(1) receptors to stimulate PVN presympathetic neurons through inhibition of GABAergic input. However, little is known about the downstream pathway involved in this presynaptic action of Ang II in the PVN. In this study, using whole cell recording ...

متن کامل

The Role of Adrenergic Receptors on Neural Excitability and Synaptic Plasticity: A Narrative Review

Adrenergic receptors have an important role in neural excitability and synaptic plasticity. Despite a lot of studies on these receptors, their exact role in brain disorders accompanied with hyperexcitability has not been determined. There are also controversies on their role in synaptic plasticity. In this review article, the important studies done in this regard have been reviewed to achieve a...

متن کامل

Presynaptic modulation by metabotropic glutamate receptors of excitatory and inhibitory synaptic inputs to hypothalamic magnocellular neurons.

The effects of activation of metabotropic glutamate receptors (mGluRs) on synaptic inputs to magnocellular neurons of the hypothalamic supraoptic nucleus (SON) were studied with the use of whole cell patch-clamp and microelectrode recordings in acute hypothalamic slices. Application of the mGluR agonist trans-(+/-)-1-amino-1,3-cyclopentane dicarboxylic acid (trans-ACPD, 100 microM) elicited an ...

متن کامل

(S)- 3,5-Dihydroxyphenylglycine )an agonist for group I metabotropic glutamate receptors( induced synaptic potentiation at excitatory synapses on fast spiking GABAergic cells in visual cortex

Introduction: (S)- 3,5-Dihydroxyphenylglycine (DHPG) is an agonist for group I metabotropic glutamate receptors. DHPG-induced synaptic depression of excitatory synapses on hippocampal pyramidal neurons is well known model for synaptic plasticity studies. The aim of the present study was to examine the effects of DHPG superfusion on excitatory synapses on pyramidal and fast-spiking GABAergic cel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of pharmacology and experimental therapeutics

دوره 316 2  شماره 

صفحات  -

تاریخ انتشار 2006